

People & Nature Consulting

Snapper Grouper Fishery | Tuna | Partnerships and Innovation

Brawijaya University, Malang October 2016

The TNC Indonesia Fisheries Conservation Program: Addressing over-fishing

- Management of deepwater snapper and grouper fisheries
- 2. Address capture of juvenile tuna, improve FAD management
- 3. Innovation
- 4. Policy and regulatory support towards sustainable fisheries

The challenge:

Management for sustainability of deepwater snapper and grouper stocks

- Data-poor (insufficient data for conventional stock assessments)
- Multi-gear fishery (dropline, longline, handline)
- Multi-species
- Multi-fleet, boats of 10 GT 150 GT
- Wide-ranging and dispersed
- Complex supply lines (including domestic transshipment)
- Export markets, which demand responsible sourcing

Management options

- Licensing (effort control)?
- Quota on catch volume?
- Gear regulations?
- Species-specific minimum size?
- Area-based restrictions?

The indicator species approach for managing mixed fisheries in Western Australia - a tropical fish-trawl example

Daniel Gaughan, Lynda Bellchambers, Corey Wakefield, Stephen Newman, Mathew Hourston, David Fairclough

Pilbara demersal fishery – spatial management

VMS-Time access management Pilbara Fish Trawl Fishery

Example:

Different management scenarios and different outcomes within one WPP

Grouper / snapper fisheries ≠ Coral reef fisheries

- Near-shore, shallow coral reef fishery:
 - $-0-50 \,\mathrm{m}$
 - mostly within 12 nm,
 - mostly < 10 GT, various gears
 - usually within 1 WPP, within 1 province
- Off-shore, deep slope fishery:
 - 50 500 m
 - nearshore and offshore
 - 0 30 GT, 30 100 GT, handline, dropline, longline
 - multiple WPP, multiple provinces

110 cm

70 cm

Lutjanus erythropterus Crimson snapper

Small Sebae or big Erythroptorus?

1.4 m

Etelis sp

Giant ruby snapper

0.7 m

Etelis carbunculus
(formerly E. marshi)

Pygmy-Ruby snapper

Described in 2016. Kupang grouper, *Epinephelus kupangensis*

Dropliners, operating from Kupang

Dropliners, operating from Kupang

Longliner, operating from Probolinggo, Java

Longliner, operating from Probolinggo, Java

Dropliner, operating from Kema, North Sulawesi

Dropliner, operating from Benoa, Bali

Dropliner, operating from Benoa, Bali

Increased compliance (Sep. 2016)?

Handliner, operating from Rote, NTT

Handliner, operating from Rote, NTT

Small-scale vessels operating around the Sulu and Banggai Islands, east of central Sulawesi

Monitoring for management

- Smart weighing scale system, traceability
- Mobile Data Capture Unit
- Captain-Operated Data Recording system, FishFace
- Spot Trace
- I-Fish Community Database

Length-based stock assessment

Indicator (based on catch composition)	Low risk
% of fish below size at first maturity	< 10%
% of fish below optimum harvest size	< 50%
% of "mega-spawners"	> 30%
ratio F/M	< 0.5
Spawning Potential Ratio	> 0.4
ratio (minimum size for trade)/(size at first maturity)	> 1.1

Estimating life-history parameters

(in absence of published values)

Parameters	Method			
Maximum size (L max)	Size of largest fish (internet pictures, our own observations)			
Asymptotic length (L infinity): "Mean length of a cohort of very old fish"	0.9 * L max			
Length at first maturity (L mat)	Snappers: 0.5 * L infinity Groupers (♀): 0.5 * L infinity Groupers (♂): 0.65 * L infinity Emperors: 0.5 * L infinity large Carangids: 0.4 * L infinity all other families: 0.5 * L infinity			
Optimum harvest size (L opt)	1.33 * L mat			
Natural mortality (M)	Pauly (1980), based on ambient temperature (20 C) and L infinity			

Estimating life-history parameters (cntd.)

Parameters	Method
Von Bertalanffy growth (K)	Froese and Binohlan (2000): M * (L opt/3*(L infinity – L opt))
Total mortality (Z)	Ault (1993): Right-hand side of the length-frequency distribution, combined with K and L infinity
Fishing mortality (F)	Z - M
Spawning Potential Ratio (current biomass of mature fish divided by biomass of mature fish in unfished situation)	Per-recruit, population model based on F, M, and growth parameter estimates

Year II, (ID #7) Length frequency of Etelis coruscans (Lutjanidae), n = 2796

#5) Length frequency of Etelis sp. (Lutjanidae), n = 2871

Year II, (ID #20) Length frequency of Lutjanus timorensis (Lutjanidae), n = 1141

Table 4.1: Values of Indicator in Length-Based Assessment

#ID	Species	$\begin{array}{c} {\rm Immature} \\ \% \end{array}$	Trade Limit Prop. Lmat	Exploitation %imm+%smat	Mega Spawn %	F vs M Ratio	SPR %
1	Aphareus rutilans	33	0.8	74	12	1.87	12
3	Aprion virescens	68	1.0	84	8	1.23	11
4	Etelis carbunculus	7	1.1	72	14	1.24	22
5	Etelis sp.	67	0.5	98	0	3.04	2
6	Etelis radiosus	46	0.9	71	18	0.65	32
7	Etelis coruscans	67	0.6	96	2	2.17	6
8	Pristipomoides multidens	13	0.9	64	22	0.67	39
9	Pristipomoides typus	8	1.0	58	28	0.63	41
10	Pristipomoides filamentosus	41	0.8	89	5	2.15	8

Table 4.2: Risk Level in Fisheries by Species and by Indicator

$\# \mathrm{ID}$	Species	Immature	Trade Limit	Exploitation	Mega Spawn	F vs M	$_{ m SPR}$
1	Aphareus rutilans	high	high	high	high	high	high
3	Aprion virescens	high	\mathbf{medium}	\mathbf{high}	high	high	high
4	Etelis carbunculus	low	\mathbf{medium}	\mathbf{high}	high	high	high
5	Etelis sp.	high	\mathbf{high}	high	high	high	high
6	Etelis radiosus	high	\mathbf{high}	\mathbf{high}	high	\mathbf{medium}	\mathbf{medium}
7	Etelis coruscans	high	high	high	high	high	high
8	Pristipomoides multidens	\mathbf{medium}	\mathbf{medium}	\mathbf{medium}	\mathbf{medium}	\mathbf{medium}	\mathbf{medium}
9	Pristipomoides typus	low	\mathbf{medium}	\mathbf{medium}	\mathbf{medium}	\mathbf{medium}	low
10	Pristipomoides filamentosus	\mathbf{high}	high	high	high	\mathbf{high}	\mathbf{high}

WPP 573

Year II, (ID #8) Length frequency of Pristipomoides multidens (Lutjanidae), n = 12955

WPP 714 and 715

(ID #8) Length frequency of Pristipomoides multidens (Lutjanidae), n = 3127

→ Difference in stock status between WPPs

Looking Ahead

VMS-Time access management Pilbara Fish Trawl Fishery

Application in Indonesia

Current	Change
VMS only used for surveillance, by DJPSKP	VMS used for surveillance and fisheries control, by DJPSKP & DJPT
VMS only for boats > 30 GT	VMS for boats > 10 GT, fishing beyond 12 nm
VMS reports positions	VMS + spatial analytics
Effort control by licensing, by WPP (not flexible, high administrative costs, low compliance)	Effort control by allocated fishing hours, by fishing area (flexible, low administrative costs, high compliance)
Ad-hoc management	Adaptive management

